INCREASING ACADEMIC ACHIEVEMENT THROUGH LOOPING

Doris Lavona Sterling
B.S., Pacific Union College, Angwin, 1979

THESIS

Submitted in partial satisfaction of
the requirements for this degree

MASTER OF ARTS

in

EDUCATION
(Curriculum and Instruction)

at

CALIFORNIA STATE UNIVERSITY, SACRAMENTO

SPRING
2011
INCREASING ACADEMIC ACHIEVEMENT THROUGH LOOPING

A Thesis

by

Doris Lavona Sterling

Approved by:

_________________________________, Committee Chair
Rita Johnson, Ed.D.

_________________________________, Second Reader
Stephanie Biagetti, Ph.D.

Date
Student: Doris Lavona Sterling

I certify that this student has met the requirements for format contained in the University format manual, and that this thesis is suitable for shelving in the Library and credit is to be awarded for the thesis.

Rita Johnson, Ed.D., Department Chair Date

Department of Teacher Education
Abstract

of

INCREASING ACADEMIC ACHIEVEMENT THROUGH LOOPING

by

Doris Lavona Sterling

Looping is the practice of a teacher staying with the same group of students for two or more years. This thesis examines the effect looping has on the academic achievement of students who participate in a three-year, grade four through six loop. An overview provides both historical and international backgrounds. This is followed by a summary of the literature focusing on the impacts looping has on parents, teachers, and students. Research was conducted at one elementary school with one class that had looped and one class that had not. The looping class included 27 out of a class of 34 students who had looped. The non-looping class consisted in 30 out of 33 students who had been together as students, but had had a different teacher each year. Research method consisted in the collection of standardized test data for both classes. A t-test for independent mean was applied to both math and English language arts data for both groups whole classes as well as disaggregated by gender and second-language
learner status. The results of data analysis showed a recurrent theme of increased academic achievement in both math and English language arts for the looping group.

__, Committee Chair
Rita Johnson, Ed.D

Date
DEDICATION

This thesis is first dedicated to Dr. Betsy Inchausti, who allowed a small group of teachers to try an experiment based on their passion for their students. Because of the trust she demonstrated in those first teachers, looping became a vital part of our school.

Several years later, when Dr. Inchausti retired, our new principal, Tu Moua, not only embraced looping as the model it was, but continued to nurture its growth.

Most of all, this thesis is dedicated to my students, past and present, who have become much more than an academic community. To my kids, you are more than my students, you are my family and I love you.
ACKNOWLEDGEMENTS

I would like to thank many people who have helped me through this master’s journey. First, I would like to thank the faculty of Sacramento State Department of Education for giving me the opportunity to expand and deepen my knowledge of education. I would also like to extend my deepest gratitude to Dr. Rita Johnson. When it seemed my thesis had reached an impasse, she got it going again and gave me new direction. I could not have completed this journey without her extra support, guidance, and assistance. Her special gift of data analysis brought life to raw numbers.

A heart full of thank-yous to my family and friends who listened and said I would finish, even when I doubted it myself. Another thank you to my teaching colleagues, who cheered me on and, on multiple occasions, took on extra duties so that this thesis could be my first priority.
TABLE OF CONTENTS

Dedication ... vi
Acknowledgements .. vii
List of Tables ... x
List of Figures ... xi

Chapter

1. INTRODUCTION ... 1
 Background of the Researcher... 1
 Background of the Study... 2
 Problem Statement... 3
 Significance of the Study... 4
 Overview of Methodology .. 4
 Limitations of the Study.. 5
 Definition of Terms ... 6
 Organization of the Thesis... 7

2. LITERATURE REVIEW .. 8
 Introduction ... 8
 Schooling ... 8

3. METHODOLOGY .. 27
 Introduction ... 27
 Research Design .. 27
 School Profile .. 27
 Sample ... 28
 Data Source .. 29
LIST OF TABLES

Page

1. 2008 NAEP 4th Grade California Comparison .. 11
2. 2008 NAEP 8th Grade California Comparison .. 12
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Third Grade Baseline CST Scores</td>
<td>31</td>
</tr>
<tr>
<td>2.</td>
<td>Mean Math Difference Grades 3-5</td>
<td>32</td>
</tr>
<tr>
<td>3.</td>
<td>Mean ELA Difference Grades 3-5</td>
<td>33</td>
</tr>
<tr>
<td>4.</td>
<td>Mean Math Difference from Grades 3-5 for Males</td>
<td>33</td>
</tr>
<tr>
<td>5.</td>
<td>Mean Math Difference from Grades 3-5 for Females</td>
<td>34</td>
</tr>
<tr>
<td>6.</td>
<td>Mean ELA Difference from Grades 3-5 for Males</td>
<td>35</td>
</tr>
<tr>
<td>7.</td>
<td>Mean ELA Difference from Grades 3-5 for Females</td>
<td>35</td>
</tr>
<tr>
<td>8.</td>
<td>Mean Math Difference from Grades 3-5 for English Language Learners</td>
<td>36</td>
</tr>
<tr>
<td>9.</td>
<td>Mean ELA Difference from Grades 3-5 for English Language Learners</td>
<td>37</td>
</tr>
<tr>
<td>10.</td>
<td>Summary of Results</td>
<td>38</td>
</tr>
</tbody>
</table>
Chapter 1

INTRODUCTION

The purpose of this thesis is to examine the relationship between looping and academic achievement. The researcher came to this thesis with more than 30 years of teaching in multi-year settings and a passion for finding creative, inexpensive methods for helping at-risk students reach their life-long potential.

Background of the Researcher:

My first four years of teaching were as teaching-principal in old-fashioned, grade one through eight, one-room school. It was in this setting that I had my first experience with looping. I still have regular contact with one of those students, a now grown adult, with daughters who are the age she was back in 1980. From there I moved to Hilltop Christian School in Antioch, California. When I began at Hilltop, it was a two-teacher school. I taught grades one through four while another teacher was employed as principal and taught grades five through eight. Through the years, the school gradually grew and a third teacher was added. For three years, I taught grades three through five. Some of the students in that group had been in my class when I taught grades one through four. As a result, a small group of students was with me for five years. Even today, Hilltop has four teachers, each teaching two grades, meaning that every child is with that teacher for two years.

In 1998, I moved from the small private school to a large, urban public school in Northern California. At the end of my first year there a colleague, who knew of my multi-year experiences, came to me and asked what I thought were the pros and cons
of a teacher remaining with a group of students. As we talked she expressed her feelings that though her class had progressed, she simply was not ready to let them go. As much as they had grown, both academically and relationally, she felt that she and they had much more to accomplish together if only they had more time. She and I went to our principal who agreed to assign each of us to the next higher grade the following year, allowing us to loop with our students. Very shortly thereafter, a third teacher asked to join us. The result was that at the beginning of the 1999-2000 school year, we began our first 4-5-6 three-year loop. For the first loop, it was just the original three teachers. However, by the end of that first loop other teachers had seen the vision and embraced the potential. By 2004 all six intermediate teacher, (two fourth, two fifth, two sixth) were participating in the loop.

Background of the Study

Located in a low socioeconomic neighborhood in a large urban city in northern California, the school in this study is demographically typical of many elementary schools in its area and other urban elementary schools across the country. The majority of students live within a few blocks of the school. Most come from single parent or non-parent homes. Many are being raised by grandparents, aunts and uncles or older siblings. There is frequent neighborhood violence and drug activity. The entire student body is eligible for free breakfast and lunch. Fourteen percent of the parents/guardians classified themselves as college graduates, while 18% reported having attended some college and 69% stated they had a high school education or less. School-wide, 60% percent of the students are English Language Learners.
Since 1999, the first year for which California Department of Education API data is available, the total percentage of ethnic populations has changed very little; however the individual categories have shifted. Over 90% of the student enrollment identifies themselves as non-white. In 1999, the Asian and Hispanic populations were nearly equal. Today Hispanic is the largest population (57%) with Asian (22%) and Black (12%) the other two statistically significant populations.

In the late 1990s, this school was also typical because students spent one year with a teacher, and then, moved on to the next grade and a new teacher the following September. By 2003, looping in the intermediate grades was a part of the School Plan. While it was the intent for all teachers in grades four through six to loop; layoffs, retirements, and promotions to administrative positions resulted in imperfect implementation and some intermediate classes were not able to remain with the same teacher for all three years. By 2009, primary teachers were asking if this model could be expanded to include their grades as well. For the 2010-2011 school year three teachers looped from second to third, two teachers looped from third to fourth grade, two looped from fourth to fifth, and one looped from fifth to sixth.

Problem Statement

The goal of this thesis is to examine the potential for academic growth when a teacher and a group of students loop. Looping, sometimes called multi-year teaching is a model in which a teacher remains with one group of students for two or more years before dropping back to pick up a new group. In a traditional classroom model, the opportunity for relationship ends with the conclusion of the school year. Each
September, most teachers and students begin the process of relationship building all over again. However, some students and teachers have a different September experience. They enter the same classroom with the same classmates that they left in June, ready to continue on in academics where they left off the previous spring. These teachers and students who now begin another school year together are engaging in a model known as looping.

Significance of the Study

While the practice of looping has become more popular in recent years, there are few large quantitative studies. This is because looping is seldom a model adopted by whole districts or even whole schools. Schools that have looping classes have little if any interaction with sites which use looping. The result is that most data is anecdotal and gathered over a very short period of time and with small populations.

Overview of Methodology

This thesis is a quantitative study comparing standardized test scores of a looped and a non-looped class. The data collected will compare the academic progress from the end of third grade to the end of fifth grade of two classes, now sixth graders, at the same school. This study will specifically focus on two classes who were third graders in 2007-2008. In both classes, the student population has remained nearly the same. However, while one class and their teacher have looped together, the other class has had a different teacher each year. This provided opportunities to gather comparative data regarding student progress in looping and non-looping classrooms in an environment where many other potential variables have naturally been eliminated.
The eight null hypotheses in this study were:

1. There is no significant difference in mathematics achievement from grades three to five between the two groups.
2. There is no significant difference in language arts achievement from grades three to five between the two groups.
3. There is no significant difference in mathematics achievement from grades three to five for males in the two groups.
4. There is no significant difference in mathematics achievement from grades three to five for females in the two groups.
5. There is no significant difference in language arts achievement from grades three to five for males in the two groups.
6. There is no significant difference in language arts achievement from grades three to five for females in the two groups.
7. There is no significant difference in math mathematics achievement from grades three to five for second-language students in the two groups.
8. There is no significant difference in math language arts achievement from grades three to five for second-language students in the two groups

Limitations of the Study

This study took place at one of 36 elementary schools in a large urban school district, using only one looped class with one teacher and one class which experienced different teachers each year. Because of the limited sample size, results may not be generalizable beyond this study.
While students are participating in a three-year loop, only baseline third-grade through end of fifth grade data was included. This excludes the final data of the loop, the sixth grade CST scores. Due to the completion date for this thesis (May 2011) the sixth grade data, which will not be available until August 2011, cannot be included.

Definition of Terms

California Standards Test (CST): The annual state-mandated assessment given to all students regular-education students in the state of California.

Individuals with Disabilities Education Act (IDEA): A United States federal law that governs how states and public agencies provide early intervention, special education, and related services to children with disabilities.

Looping: The practice of allowing teachers to keep the same students over a two-year period (sometimes longer) – provides teachers and students at least a month of extra instructional time by eliminating the “getting to know you” period at the beginning of the second year of a looping class” (Wynne & Walberg, 1994, p. 527).

The National Assessment of Educational Progress (NAEP): A periodic assessment of student progress conducted in the United States by the National Center of Educational Statistics, a division of the United States Department of Education.

The National Report Card: The format in which NAEP data is published.

No Child Left Behind (NCLB): Formally known as the Elementary and Secondary Education Act. One requirement of this act is that states which receive federal Title I funds must adhere to certain guidelines and participate in NAEP.
Progress in International Reading Literacy Study (PIRLS): Headquartered in Amsterdam, the (PIRLS) evaluates trends in reading achievement in fourth grade from thirty-five different countries. It is conducted by the International Association for the Evaluation of Educational Achievement (IEA).

Standardized Testing and Reporting (STAR): The complete battery of tests, including CST, given annually to all students in the state of California.

The Trends in International Mathematics and Science Study (TIMSS): This international assessment of the mathematics and science knowledge of fourth and eighth grade students from around the world is done every four years.

Organization of the Thesis

This thesis is comprised of five Chapters. Chapter 1, the introduction, includes the purpose of the study, statement of the problem, the significance, and limitations of the study and definitions of terms used in the study. Chapter 2 is the review of literature. This chapter begins with a history of education focusing on the transition from one-room education to the one-year one-teacher model in wide use today. Chapter 2 then examines the condition of academic achievement in the United States today. Finally, Chapter 2 examines the research on looping and the impact of this model on parents and teachers as well as student achievement. Chapter 3 is the methodology. It provides descriptions of the participants, the method in which data was collected, the tools used to evaluate it, and the statistical results of that evaluation. Chapter 4 contains the analysis of the data collected. Chapter 5 contains a summary of the findings and recommendations for future research.
Chapter 2
LITERATURE REVIEW

Introduction

This literature review will look at research on the history of education in the
United States, more specifically in the state of California. It will then examine looping
within elementary classrooms and its use as a model to improve academic
performance. Studies will be reviewed which document how parents, teachers, and
students respond to being in a looping classroom. Specific examination will be made
on the effects of looping based on gender, ethnicity, and English Language Learner
status.

Schooling

Historical Overview

The earliest recorded stories of schools in America, tell tales of one-room
schoolhouses taught by loving but stern spinsters, paid by the local town to come and
educate their children (Cavanagh, 2006). In early colonial times, starting with
Massachusetts, schools were usually religious in nature. Protestants believed that each
individual has their own unique relationship with God, and it was their duty to study
the Bible to interpret God’s word. As America moved west, education and the one
room school moved with it. Teachers in one-room schools were challenged by the task
of teaching eight levels of math, eight levels of English, and eight levels of every
subject in the elementary curriculum. As difficult as curriculum planning and delivery
was, a family-like social dynamic grew in those schools (Pierre-Pierre, 1994).
According to Marshak (2006), the change to specialization in education began with Napoleon, Prussia, and Horace Mann. After being defeated by the French army, Prussia committed itself to school system reform and in 1806 developed the first wide-scale public school system. Along with other changes, one that had ramifications for education today was the decision to group children into classes according to age and assigning teachers to teach these age-specific groups the assigned curriculum for that year. This seemed a simple and logical way to provide education to a large number of children at the same time. A secondary reason for changing teachers each year was that at that time, schooling was for boys, and educators believed that having a teacher a longer time would lead boys to become emotionally attached to their teachers, diminishing their masculinity and limiting their academic learning.

In the early 1840s Horace Mann, a prominent leader in American public education, toured Prussia. When he returned to America, he strongly advocated for the implementation of the Prussian model in American schools. Beginning in Massachusetts, Mann integrated the elements of age grouping and a new teacher every year. The invention of motorized school busses in the 1920s, allowed students to be transported from further distances making it even easier to consolidate students into larger, more centrally located schools (Sass, 2010).

Mann’s reforms were not universally embraced. Rural communities, where children interacted in multi-age groups in every other aspect of their lives strongly resisted what seemed to them an illogical, unnecessary separation. In addition, the small numbers of students at some grade levels in rural communities made the idea of
grouping a class by age impractical. Resistance was strong enough that it took sixty years for age-graded grouping to become the norm in American schools (Johnson, Dupuis, Hall, & Gollnick, 2002).

Academic Achievement in the United States Today

While it seemed logical at the time, looking at education today, some question the wisdom of the Prussian model. Even if Mann’s rationale made sense over one-hundred fifty years ago, recent research indicates, it is time to rethink and maybe restructure American education. Achievement gaps which begin in elementary school continue to grow throughout middle school and high school, perpetuating the current economic and social structure inequities. Attempts to address the achievement gap, within the current economic climate, have stalled. Interventions which come with a cost are difficult to support. A look at the performance of fourth and eighth grade California students comparing them to their counterparts in other states in reading and mathematics is very telling.

At an international level, there are two assessments which set the stage for mathematics and reading: The Trends in International Mathematics and Science Study (TIMSS) and The Progress in International Reading Literacy Study (PIRLS). According to the 2007 TIMSS data, United States fourth grade students ranked 11th in the countries tested, with a scale score of 529, which is 29 points above the mean. Eighth grade students ranked ninth worldwide with a scale score of 508, eight points above the mean. Scores for both groups have risen over the past 12 years: fourth grade from 518 to 529 and eighth grade from 492 to 508.
The Progress in International Reading Literacy Study (PIRLS) is given to fourth grade students every five years. In data from the 2006 PIRLS, the United States average fourth grade scale score was 540, compared to the international average of 500. As encouraging as this data is, this ranks the United States as 18th out of the countries tested. It is also notable that this is a drop from 542 in 2001.

While United States educators are faced with the challenge of keeping up or catching up with the rest of the world, educators in California are, in many cases, not even achieving the national average. Using the National Assessment of Educational Progress (NAEP) data, Table 1 shows how Californian fourth-graders ranked with their peers in the other 49 states, Washington, DC, and students educated by the Department of Defense. Because the students studied in chapter three of this thesis come from a school where 100% of the students receive free lunch, the NAEP data collected here was disaggregated for the same group. Generally, students in California scored lower than their matched group in other states. In reading, only six states scored lower, in writing only five states scored lower and in math, only one jurisdiction, the District of Columbia, had a score that was significantly lower.

Table 1

2008 NAEP 4th Grade California Comparison

<table>
<thead>
<tr>
<th></th>
<th>Mean Scale Score</th>
<th>CA Scale Score</th>
<th>Higher than California</th>
<th>Lower than California</th>
<th>Equal to California</th>
<th>Not Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading</td>
<td>206</td>
<td>196</td>
<td>44</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Math</td>
<td>228</td>
<td>220</td>
<td>44</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Writing</td>
<td>141</td>
<td>134</td>
<td>38</td>
<td>5</td>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>
California faces additional challenges in raising high-school graduation rates. In order to have students make it successfully through high school, they must first make it through middle school. NAEP data for eighth grade students is an indicator of how well they have made the transition to middle school, and can be a predictor of future high-school success (see Table 2).

Table 2

2008 NAEP 8th Grade California Comparison

<table>
<thead>
<tr>
<th></th>
<th>Mean Scale Score</th>
<th>CA Scale Score</th>
<th>Higher than California</th>
<th>Lower than California</th>
<th>Equal to California</th>
<th>Not Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science</td>
<td>133</td>
<td>122</td>
<td>43</td>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Reading</td>
<td>249</td>
<td>241</td>
<td>41</td>
<td>1</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Math</td>
<td>266</td>
<td>258</td>
<td>40</td>
<td>2</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Writing</td>
<td>141</td>
<td>136</td>
<td>28</td>
<td>0</td>
<td>16</td>
<td>6</td>
</tr>
</tbody>
</table>

However, compared with fourth grade NAEP data, eighth grade data for California was even more concerning. Based on the results of the 2007 NAEP, only two jurisdictions, Alabama and Washington D. C., scored lower than California in mathematics. Only one jurisdiction, Washington, D.C., scored lower than California in reading, and California was last in writing.

Students in California are tested annually using the California Standards Test (CST). All students are expected to be proficient in both Math and English Language Arts. For third grade students, that means having a scale scores of 350. In 2010, the mean scale score in math for third grade students was 395 with 65% of the students in the state scoring proficient or above. The mean scale score for third grade English
Language Arts (ELA) was 342 with 44% of the students in the state scoring proficient or above.

By sixth grade, score for the state are are higher in ELA, but lower in math. The sixth grade mean scale score for math was 360 with 52% of the students scoring proficient or above. The English Language Arts mean scale score was 356 with 56% of the students reaching proficiency.

The Challenge

Faced with international and national data as well as scores from the California Standards Test (CST), California educators have a difficult challenge trying to bridge these educational achievement gaps while working to meet the expectations the State of California and API as well as No Child Left Behind and AYP impose. As a result, the search for ways to raise California students’ academic achievement has become critical.

The current fiscal crisis that both the state and nation face has exacerbated the problem. School districts that were forced to cut millions from their 2010-2011 budgets are currently faced with the need to cut additional millions. The district studied in this thesis cut $32.5 million in the past year and is currently looking for ways to cut $22.35 million for next year. This leaves educators with two seemingly conflicting and contradictory goals: raise test scores and cut budgets.

In the past, schools have been fortunate to have benefited from intervention programs, many of which have been very effective. Within the school day, instructional assistants and intervention teachers have taken small groups of struggling
students and provided them with extra intervention. In other situations assistants or intervention teachers have worked with classroom teachers within their classrooms, making differentiation of instruction more effective. Other intervention programs have increased the amount of instructional time available for large numbers of students, sometimes entire schools. Extended day and summer school have increased the amount of time classroom teachers have with their students. After school programs such as 4th R and STAR have provided homework help as well as other enrichment. Unfortunately all of these interventions all require increased personnel time, and therefore increased cost.

The severity of recent budget cuts means that little will be left for special programs and interventions. If schools are going to accomplish their first goal, to increase achievement, they will have to find ways that do so without any additional cost. What would happen if public education took students back to the model of the past, kept a group of students in the same class with the same teacher for multiple years? What would happen if classes looped?

Looping and Teachers: Increased Instructional Time

Looping – the practice of allowing teachers to keep the same students over a two-year period (sometimes longer) – provides teachers and students at least a month of extra instructional time by eliminating the ‘getting to know you’ period at the beginning of the second year of a looping class. (Wynne & Walberg, 1994, p. 527)
Looping teachers benefit by not having to repeat routine procedures and practices. Even if some schedule and procedural changes need to be made later, they can be made gradually, not taking away from instructional time. Behavior standards and expectations, and individual and group responsibility and accountability change little from one grade or year to the next. Simply having familiar posters on the wall, and starting with familiar verbal cues is enough to remind students of those expectations.

Looping teachers also are ahead of non-looping teachers when differentiating instruction and scaffolding standards for optimum student success. Jubert (1996) and Capp, have both been elementary principals. Capp was named California principal of the year in 2003-2004. Together they have authored books and articles promoting teaching excellence including preparing teachers to see looping as a method for creating a continuum of learning. As principal of Rocklin Elementary in Rocklin, California Capp focused on hiring and training teachers who embraced the model. As a result, while many teachers spent the first two weeks to a month pre-testing their students, his looping teachers already knew their students and, with last year’s achievement test data in hand, were ready to refine and differentiate instruction.

In looping classrooms, teachers know exactly what the student has learned and how it was taught. Teaching and learning begins on day one of the second year. “With only the content standards as the guide, the teachers forge learning paths for each of their students across two or even three grade levels, and build increasing success cycles for each learner” (Elliott & Capp, 2003, p. 35).
As more districts look for cost savings by increasing class size, looping can make handling larger numbers of students easier. While teaching more students is definitely additional work, again, the gains of the looping classroom lesson those challenges. Students who know procedures and expectations require less individual teacher input and are more able to carry on the tasks of learning with less teacher input (Checkley, 1995).

At a time when standards are becoming more rigorous and the demand to master them to proficiency is increasing, this extra time has the potential to make or break some student’s ability to reach academic proficiency. However, looping teachers must become masters of two or more grade-levels of standards. While this extra task discourages some from looping, it can actually be good news. Very few standards are introduced, taught, and mastered in one year. Rather, a standard that is introduced in fourth grade may become a key standard in fifth grade, and a stepping-stone to sixth grade. Teachers who loop have the opportunity to look at the entire curriculum for two or three consecutive grade levels, and then take the students from where they are, to proficiency of those standards, and for some students, even farther (Elliott & Capp, 2003). In the end, this creates better teachers because they come from the experience of looping having developed a more all-encompassing view of the educational process (Grant, Johnson, & Richardson, 1996b).

Looping and Parents

David Marshak, (2006) a professor in the College of Education at Seattle University, has experienced looping as a parent, a district administrator and
researcher. Marshak interviewed more than 200 teachers and 150 parents from looping classrooms in five states. He concluded that, for parents, education should be like any other long-term relationship in their children’s lives. Parents select pediatricians, dentists, and day-care assuring that each of those individuals knows and cares about the child, placing value in the benefits of those relationships over time. Few parents would think of automatically changing those relationships every September. Over time, parents in looping classrooms have the opportunity to get to know the teacher, and be partners in the education being provided for their individual child. Along with meeting student’s academic needs, parents see the looping teacher as their long-term partner in teaching responsibility and social skills (McClellan, 1995).

In 2002 Nichols and Nichols studied parental attitudes toward looping. Their assertion was that placing students in looped classes would result in parents having a more positive attitude towards the school and their child’s classroom environment. Four-hundred-fifty-five parents from seven elementary schools participated in the study. The results of Nichols’ data analysis suggested that parents of multiyear looping students had a significantly more positive view of their child’s school experience. When factors such as single-parent home, low-income, and female students were applied, positive responses were even higher. In short, parents surveyed believed that students’ remaining with the same teacher and cohort of students for multiple years created positive outcomes for students, and led parents to have positive perceptions of the school. While these surveys reflected parents’ recollections of their own “worst teacher” and the fear that their child could have such a teacher for multiple years,
Nichols’ study concluded that parents believed that the benefits of looping outweigh the risks.

Looping and Students: Classroom as Community

Along with teaching academic standards, many teachers see their job as also teaching social and community-building skills. The additional time gained in not having to get to know a new class, can be used to teach these life skills. Noddings (2005), who is respected as an expert in the field of care in education says,

A policy of keeping students and teachers together for several years supports caring in two essential ways: it provides time for the development of caring relations, and it makes teaching themes of care more feasible. When trust has been established, teacher and students can discuss matters that would be hard for a group of strangers to approach, and classmates learn to support one another in sensitive situations. (p 69)

The creation of a school community can become an empowering factor in student learning. As students reach 11 to 12 years of age, they become more peer dependent and less teacher dependent. Students who have looped have had the opportunity to learn how to work cooperatively with a variety of individuals. They also have learned the strengths and learning styles of each of their classmates. After having spent at least one prior year together, students are able to overlook social differences as the bonds of community and each individual’s contributions to it grow. Students show more empathy, concern, and mutual respect for one another because
they have blended into one cohesive team, a family (Jacoby, 1994; Kelly et al., 1998; Wood, 1994). Noddings (2005) believes that the formation of this community is at least as important as academic achievement and that the greatest responsibility of education is to teach children to be loving and to accept love. She theorized that academic achievement, even if some see it as education’s primary goal, will only be marginally successful unless students believe that they are cared for and learn how to care for others.

Teachers may struggle to find balance between pushing students to success and protecting their self-esteem. In the looping classroom, the relationship that comes with time and experience lessens this concern. Jacoby (1994), observed, “By the second year, I was able to offer more constructive criticism on the students’ academic work without damaging our relationship” (p. 59).

From the growth of emotional security within this community comes increased attendance. Data from Rappa (1993) showed increase from 92% Average Daily Attendance (ADA) in non-looping classes to 97.2% in looping classes. Students valued coming to school, seeing themselves a vital contributors to the classroom community. As a result, suspensions and the behaviors, which led to them, decreased.

Kelly et al. (1998) noted that in many cases, the cohesiveness of this family goes so far as to be observable in the arrangement of classroom furniture. In his study of looped classes, Kelly noted that more student work was displayed on walls, students were more likely to be seated in cooperative groups, and even the teacher’s desk was more likely to be nearer to those of the students.
Looping and Special Needs Students

Along with the benefits that looping provides to average students, research shows that looping has advantages for students with special needs or non-traditional learning styles. Grant et al. (1996b) state,

The looping classroom can be an ideal intervention for difficult students. Children with special needs - shyness, physical disabilities, those who are emotionally fragile, even the class bully need the stability and security of a long-term relationship and a predictable environment, probably more than the more resilient kids in the class.

(p. 12)

Skeptics have raised the concern that keeping the same special-needs students in one room for such an extended time may not be in their best interest or that of their peers. However, more and more the effectiveness as well as the efficacy of separate special education classes has being called into question. Current federal policy, according to the The Individuals with Disabilities Education Act (IDEA) mandates that children be educated in the least restrictive environment. According to Osborne and Dimiatia (1994),

Specifically, the IDEA requires states to establish procedures assuring that students with disabilities are educated to the maximum extent appropriate with students without disabilities. Further, the use of special classes and separate facilities or other removal from the general education environment may occur only when the nature or severity of
the student's disability precludes satisfactory instruction in general education classes, even with supplementary aids and services. (p. 1)

Although not specifically mandated by law, more and more districts are interpreting IDEA to mean that students with disabilities should be learning, meeting their goal, and making their contributions in the regular education classroom (Fuchs & Fuchs, 1995). The National Association for State Boards of Education (NASBE) strongly endorsed the "full inclusion" of students with disabilities in regular classrooms. In 1992, NASBE released a report titled "Winners All: A Call for Inclusive Schools" (Kysilko). Two recommendations of that report were the creation of a new belief system and vision that includes all students, and encouragement of collaboration between general and special educators to better serve the diverse student population.

To ensure that students with disabilities are educated in the least restrictive environment, the IDEA requires that school districts have a range or continuum of alternative placement options to meet their needs. A structured looping classroom is one option within that continuum. Because it operates as a family when new students or ones with learning differences are introduced, the students can embrace them and help them fit in. This level of social stability and acceptance can help promote achievement and lessen the impact of disabilities. Slow learners have opportunity to catch up, and shy students have the predictability of an environment that allows them to bloom. Grant et al. (1996a) noted that students diagnosed with Attention Deficit Disorder or Attention Deficit Hyperactivity Disorder find continuity calming, and
class bullies may find appropriate expressions for leadership skills within the stability and structure of a looping classroom. While looping is not a substitute for special education, special education referrals are typically less frequent in looping classrooms. Looping has also been found to reduce, but not eliminate retentions (Forsten, Grant, Johnson, & Richardson, 1997).

Looping and Socioeconomically Deprived Students

Students coming from immigrant families or those who come from homes of poverty and violence bring a unique set of life experience to the classroom. Topics that come out of those experiences are sometimes painful and may be uncomfortable for some teachers and students. Noddings (2003) believed that these conversations are not only appropriate, but also necessary if educators are to connect education to students’ personal realities. As they plan for curriculum delivery, along with addressing standards, looping teachers are better equipped to make the curriculum relevant by connecting issues being studied to the lives of their students, whom they have come to know over a period of years (Grant et al., 1996a). They now have the opportunity to “teach life.”

Rutter (1984) discovered, in his 1979 study of students from disadvantaged areas of London, that some schools had consistently better academic results, lower rates of delinquency and increased attendance. His study showed that these schools all had certain factors in common. All of these schools had high academic and behavioural expectations which were clearly communicated to students. All students were expected to be active participants in their own education through participating in
setting the curriculum as well as being involved in assessment analysis and personal goal setting. Student engagement was encouraged by explicit teaching of cooperative learning strategies in the classroom and by holding class meeting in which students took major roles in discussions of problems and solutions as well as celebrations of successes. Rutter pointed out here, that in order to build individual resilience, opportunity must be found to celebrate every child for something. To facilitate students’ desire to be academically engaged, these schools all provided a wide variety of learning methods and resources to support student success.

Looping and learning. In recent years, districts and schools have implemented a variety of programs promoting social growth and responsibility as a stepping-stone to academic excellence. Character education programs such as Second Step and Navigators, as well as various peer-mediation models reach a segment of the population for a short time. However, along with the time and group-size limits of these programs, most of them require financial support, either in the way of additional staff to facilitate them, or materials to present and facilitate them. Looping, on the other hand, takes an already formed group of student, an already paid teacher, and places them in a long-term setting where these same lessons can be taught and reinforced over a period of years, to an entire class, with no additional expense.

Along with demonstrating benefits in how students learn, looping research also shows an increase in the scope of topics that can be taught. As time in the looping classroom increases student are able to take the values of community they experience there and apply them to the outside community. While this may lead to some
uncomfortable conversations, it is the community of the looping classroom that makes having these conversations safe, sending students back into the community who are not only educated, but resilient. Noddings (2003) convincingly insists that caring must be a part of regular education and that the looping classroom is the ideal environment in which to create and practice it. She states,

My contention is, first, that we should want more from our educational efforts than adequate academic achievement and second, that we will not achieve even that meager success unless our children believe that they themselves are cared for and learn to care for others….There are risks, of course, in understanding of any unit of study that focuses on matters of controversy or deep existential concern, and teachers should anticipate these risks...My own inclination would be to allow discussion of these cases and to be prepared to counteract them with powerful stories of honesty, compassion, moderation, and charity. (pp. 64, 67)

While changing students’ family structure and socio-economic status are not possible for the classroom teacher, looping can be an effective next-best opportunity to teach values that are vital to raising children into both positive contributors to society and life-long learners (Jubert, 2008). Jubert also argues that remaining with one teacher and set of classmates for two or even three years creates stronger relationships of trust in spite of other variables such as socio-economic status, race, and gender. Nichols and Nichols, (2002) cited several studies that link looping to a reduction in
discipline problems and suspensions. According to Wood (1994), there is a wealth of experience demonstrating that the most important variable in a positive elementary school program is providing children, especially those approaching adolescence, with a single meaningful adult relationship. Since students spend a significant amount of their time at school, the classroom teacher is an ideal adult to fulfill this role. It is an overwhelmingly daunting task to expect a classroom teacher to build the trust necessary to create a community such as Freire suggested (as cited in McLaren, 2003); yet, in most schools, teachers are expected to create such a community and then use it to make significant differences in the lives of students within the time of one school year. Butzin (2004) went so far as to call that expectation “insanity” (p. 307).

Finally, looping allows students to take on more of the responsibility for what they learn, how they learn it, and how they demonstrate what they have learned. Many students have little interest in learning just for learning’s sake, just because some adult tells them it is important. If goals are based on what teachers know about students combined with what students know and want to know about themselves as learners, school experience will be more successful and have a greater lasting effect on student values, attitudes and behavior (Brandt & Tyler, 1997).

Unfortunately, there has been little long-term empirical research done to defend looping. Even so, several researchers have reported anecdotal evidence that they believe adequate to defend looping as a scientifically viable educational model (Grant et al., 1996a; Northeast and Islands Regional Educational Laboratory at Brown University, 1997; Wynne & Walberg, 1994). Both Grant et al. and Wynne and
Walberg provided evidence of the short-term benefits of community within the looping classroom as well as the power with which those looped students progressed educationally and moved into young-adulthood. The writings of Grant et al. (1996a, 1996b), Noddings (1995, 2003, 2005), Elliott and Capp (2003), and Brandt & Tyler (2007) support the conclusion that consistent, predictable changes in how students function in community can be created and observed in the looping classroom, and that school experiences may have lasting effects on values, attitudes, and behavior. The current study is an attempt to add to the body of research about looping and its effect on academic achievement.
Chapter 3

METHODOLOGY

Introduction

This post hoc study focused on attempting to find out if looping affected the academic performance of students on California State Achievement Tests. The experimental group (Group I) consisted of a heterogeneous, multi-ethnic group of students who received the majority of their instruction from the same teacher for grades four, five, and six. The control group (Group II) remained together as a cohort of students, but received the majority of their instruction from a different teacher each of their fourth through sixth grade years.

Research Design

In this quantitative study, the CST results of students who participated in a looping classroom from grades four through six were compared to a group of students, at the same school, who, for the same two years, experienced a traditional year-to-year placement. Both the teacher of the looping class and the teachers of the non-looping class had more than five years of teaching experience and a minimum of four years at the studied school.

School Profile

The students in this study attended an inner-city urban school in Northern California. The school is part of a large, pre-school through 12th grade district. The enrollment of the school in this study has averaged approximately 500 students for more than 10 years. CDE (California Department of Education) demographic data for
the 2009-2010 school year shows the following ethnic data: Hispanic – 62%, Asian - 21%, African American - 8%, White – 5%, other – 3%, Native American – 1%. Most of the students whose data was analyzed for this thesis came from SED (socio-economically deprived) homes. All students enrolled at this school received free breakfast and lunch during the school year and the school multi-purpose building is opened by the city as a “community lunch center” during summer vacation. Data from the California Department of Education listed that less than half of students’ parents had more than a high-school education. The neighborhood has high statistics for drug and gang activity and associated violence.

Sample

Group I consisted of 25 students in a class of 34 students who participated in a three-year, fourth/fifth/sixth grade looping experience. Group II consisted of 30 students out of a class of 33 who were enrolled in one of two fourth grade classes, which were combined to into one fifth-grade class. These students then remained together but with a different teacher for sixth grade. Students in Group I who enrolled after December of their fourth grade year were not included in the study. Students in Group II who were newly enrolled at the beginning of sixth grade were not included in the study. Special Education students who participated in both classes on a part-time basis and who took CAPA (California Alternative Performance Assessment) were also not included. CST scores from third grade, before the looping group was formed, were evaluated to examine how the two classes compared before these groupings were formed.
Data Source

CST scores in math and English language arts, given annually to all students in the spring semester, were used to determine differences in achievement of looped and non-looped students. Other demographic data was also analyzed to see if differences in gender or second language learner identification influenced academic differences between the two groups. Ethnographic and academic data from the California Department of Education, accessed through the school district’s data system was used to compare the two classes. Data from the two classes was compared longitudinally to establish how closely matched the two groups were when they entered fourth grade and how their test scores compare now.

Treatment

The treatment for the experimental group was looping with the same teacher from grades four through six.

Data Analysis

All data was entered into an excel spreadsheet. A t test for independent means was used to analyze the data utilizing the Statistical Package for Social Sciences (SPSS) program. Data from both main groups and sub groups were analyzed.
Chapter 4

RESULTS

This study compared the effects of looped and non-looped fourth through sixth grade classes in an urban elementary school. The null hypotheses were:

1. There is no significant difference in mathematic achievement from grades three to five between the two groups.
2. There is no significant difference in language arts achievement from grades three to five between the two groups.
3. There is no significant difference in mathematics achievement from grades three to five for males in the two groups.
4. There is no significant difference in mathematics achievement from grades three to five for females in the two groups.
5. There is no significant difference in language arts achievement from grades three to five for males in the two groups.
6. There is no significant difference in language arts achievement from grades three to five for females in the two groups.
7. There is no significant difference in math mathematics achievement from grades three to five for math students in the two groups.
8. There is no significant difference in language arts achievement from grades three to five for second-language students in the two groups.

The looping group, Group I, was the experimental group. The non-looping group, Group II, was the traditional group. The independent variable was the
implementation of the three-year looping model. The dependent variable was student achievement in mathematics and English/Language Arts. Standardized test scores data for both groups was recorded and compared for statistical significance.

Analysis

To establish a baseline, the difference in each groups mean data for third grade was determined in both mathematics and language arts (see Figure 1 below). The difference between the group means in third grade mathematics for Group 1 ($M = 352.7407, SD = 59.72$) and Group II ($M = 384.2581, SD = 77.44$) was not statistically significant $t(56) = -1.716, p = .092$. The difference between the group means in third grade English/Language Arts for Group 1 ($M = 306.3333, SD = 38.63$) and Group II ($M = 331.1290, SD = 44.52$) was statistically significant $t(56) = -2.249, p = .028$. In both cases, the control group scored higher in mathematics and language arts in the third grade, at the start of the looping process (see Figure 1).

Figure 1. Third Grade Baseline CST Scores.
Null Hypothesis 1: There is no significant difference in mathematic achievement from grades three to five between the two groups.

To test the first hypothesis, a t-test for independent means was done. The difference between the group means in mathematics from third grade to fifth grade for Group 1 ($M = 68.5556$, $SD = 48.25$) and Group II ($M = -9.5484$, $SD = 66.40$) was statistically significant, $t(56) = 5.057$, $p = (0.000)$ (see Figure 2).

![Mean Math Difference Grades 3-5](image)

Figure 2. Mean Math Difference Grades 3-5.

Null Hypothesis 2: There is no significant difference in language arts achievement from grades three to five between the two groups.

To test the second hypothesis, a t-test for independent means was done. The difference between the group means in language arts from third grade to fifth grade for Group 1 ($M = 57.5926$, $SD = 35.69$) and Group II ($M = 13.4839$, $SD = 39.96$) was statistically significant, $t(56) = 4.405$, $p = (0.000)$ (see Figure 3).
Null Hypothesis 3: There is no significant difference in math achievement from grades three to five for males in the two groups.

To test the third hypothesis, a t-test for independent means was done. The difference between the group means in language arts from third grade to fifth grade for Group 1 (M = 61.2857, SD = 43.67) and Group II (M = -20.6923, SD = 72.68) was statistically significant, t(25) = 3.584, p = (0.001) (see Figure 4).
Null Hypothesis 4: There is no significant difference in mathematics achievement from grades three to five for females in the two groups.

To test the fourth hypothesis, a t-test for independent means was done. The difference between the group means in mathematics from third grade to fifth grade for Group 1 (\(M = 76.3846, \text{SD} = 53.38\)) and Group II (\(M = -1.5000, \text{SD} = 62.35\)) was statistically significant, \(t(29) = 3.639, p = (0.001)\) (see Figure 5).

![Figure 5. Mean Math Difference from Grades 3-5 for Females.](image)

Null Hypothesis 5: There is no significant difference in language arts achievement from grades three to five for males in the two groups.

To test the fifth hypothesis, a t-test for independent means was done. The difference between the group means in mathematics from third grade to fifth grade for Group 1 (\(M = 54.0714, \text{SD} = 36.32\).) and Group II (\(M = 16.69, \text{SD} = 46.52\)) was statistically significant, \(t(25) = 2.337, p = (0.028)\) (see Figure 6).
Figure 6. Mean ELA Difference from Grades 3-5 for Males.

Null Hypothesis 6: There is no significant difference in language arts achievement from grades three to five for females in the two groups.

To test the sixth hypothesis, a t-test for independent means was done. The difference between the group means in mathematics from third grade to fifth grade for Group 1 (M = 61.3846, SD = 36.07) and Group II (M = 11.1667, SD = 35.72) was statistically significant, t(29) = 3.639, p = (0.001) (see Figure 7).

Figure 7. Mean ELA Difference from Grades 3-5 for Females.
Null Hypothesis 7: There is no significant difference in difference in math achievement from grades three to five for English-language learners in the two groups.

To test the seventh hypothesis, a t-test for independent means was done. The difference between the group means in mathematics from third grade to fifth grade for Group 1 ($M = 65.0870$, $SD = 45.26$) and Group II ($M = -10.07$, $SD = 68.54$) was statistically significant, $t(50) = 4.529$, $p = 0.000$ (see Figure 8).

![Mean Math Difference from Grades 3-5 for English-Language Learners](image)

Figure 8. Mean Math Difference from Grades 3-5 for English-Language Learners.

Null Hypothesis 8: There is no significant difference in difference in language arts achievement from grades three to five for English-language learners in the two groups.

To test the eighth hypothesis, a t-test for independent means was done. The difference between the group means in mathematics from third grade to fifth grade for Group 1 ($M = 58.6522$, $SD = 34.73$) and Group II ($M = 13.2069$, $SD = 40.822$) was statistically significant, $t(50) = 4.254$, $p = 0.000$ (see Figure 9).
Summary

This study examined the CST achievement scores gains in mathematics and English/Language Arts (ELA) from grades three to five, for two groups of students at an urban elementary school, looped in grades four to six, and not looped. An analysis of baseline data from the third grade indicated a statistical difference between the two groups in mathematics, with the control group higher, and no statistical difference between the two groups in ELA, although the control group scored higher also.

Based on the results of the eight t-tests conducted, there is a significant difference in student achievement when students loop with one teacher for multiple years and when students have a different teacher each year. This conclusion proved true for Groups I and II as entire classes, and continued to prove true when data was disaggregated based on gender, ethnicity, and English language learner designation. It
is noteworthy that the final mean of the control group was greater than that of the non-control group even when they entered the looping grades with lower scores.

Figure 10. Summary of Results.
Chapter 5

CONCLUSION

Picture a typical school on the first day of school: Excited and nervous students and parents stand in front of the office window straining to read class lists, trying to identify the teacher and room that will be their class for the next nine months. Teachers nervously wait for the first bell to see who will walk through the door. It is not just kindergarten and first-grade students who have butterflies in their stomachs. Even after the final bell rings, parents linger outside classroom doors just to be sure their child will be okay.

At a looping school, that first day looks very different. Most kindergarten students have already visited the school and had an opportunity to meet their teachers. Students and their parents from looping classes hang out in their familiar classrooms chatting about their past summer’s activities. Looping teachers are busily locating their few new students and buddying them with a class leader. By the time the bell has rung, students and teachers in looping classrooms are already engaged in learning.

A 1913 memo from the United States Department of Education asked,

Shall teachers in graded city schools be advanced from grade to grade with their pupils through a series of two, three, four, or more years, so that they may come to know the children they teach and be able to build the work of the latter years on that of the earlier years? (As cited in Northeast and Islands Regional Educational Laboratory at Brown University, 1997, p. 4)
While American elementary schools have, for the most part, moved to the one-grade-one teacher model, various forms of the multi-age, multi-grade, multi-year model do exist, most notably in the Waldorf educational model which is in use in over 170 schools in the United States. Internationally, the looping model has been more widely accepted. In Germany and Italy, students staying with one teacher for four years is the norm, and six-year elementary loops are quite common (Burke, 1997) In some Asian countries, high-school teachers remain with a group of students through all four years in the same subject. In Japanese educational philosophy, the relationship between teachers and students is seen as more important than teachers’ specialization in a given subject (Nichols & Nichols, 2002).

Coming from both a personal and professional point of view, Grant et al. (1996b) posited:

We recommend that American educators likewise give greater emphasis to the principle of group persistence…Schools should try to keep discrete groups of students and teachers together over long periods of time. The size of the groups is not as important as their continuity. (p. 11)

While most intermediate teachers at the researcher’s school have found looping to be a positive experience, not all have. Over the past 14 years, three teachers have taken teaching positions at other schools, retired, or moved to non-classroom teaching positions as ways to get out of looping. In all three cases, the teacher’s reasons centered on the additional work required to master multiple years of curriculum and standards.
 Though rare, a few students and parents have asked not to remain with the same teacher for the entire loop. Those requests have come because of conflicts with peers as well as dissatisfaction with the education provided by a particular teacher. In each of those cases, teachers have worked together with administration and families to find a placement that is best for all involved.

Recommendations

This study has potential for future research. First, increasing the scale of this study by replicating it with a larger sample and across more grade levels would add to the generalizability of the results. This would deal with the limitations in the current study, of the teacher/researcher being the instructor of the looped class. Are differences in group data due to looping or simply to the effectiveness or ineffectiveness of teachers involved? Second, a longitudinal study, tracking looped and non-looped students through middle school and high school would help researchers know if the achievement gains persisted. Secondary research on motivation and self-efficacy are also possibilities with this model.

Conclusion

The original motivation for looping was as a method for improving academic achievement. However, since the time of its adoption, the purpose for looping has expanded beyond academics. Looping has provided teachers the opportunity to establish long-term relationships with students and their families, relationships that continue to allow them to influence students’ lives far beyond their time in the elementary classrooms. Many looping teachers have contact with and continue to
mentor former students through high school. Frequently, these students return during their senior year of high school asking to fulfill their community service hours by giving back to their elementary school and former teachers.

At the end of the 2009-2010 school year, as I was ending a year of teaching fifth grade, my second year with a class, I was offered the opportunity to participate in Teacher Talent Initiative (TTI), a federal program which rewards high-performing teachers for being willing to move to targeted at-risk schools. It sounded like a great challenge, the invitation to apply was a tremendous honor, but I turned them down. The administration asked why I turned down such a prestigious honor and financial incentive. My reply was, “ask me in another year, but not now. I’m looping!”
APPENDIX

Results
Figure 1: Baseline Data

![Baseline Third Grade Scores](image1)

Figure 2: Null Hypothesis 1

![Mean Math Difference Grades 3-5](image2)

Figure 3: Null Hypothesis 2

![Mean ELA Difference Grades 3-5](image3)
Figure 4: Null Hypothesis 3

![Bar chart showing mean math difference from Grades 3-5 for Males.]

- Series 1, Group I: 61.2857
- Series 1, Group II: -20.6923

Figure 5: Null Hypothesis 4

![Bar chart showing mean math difference from Grades 3-5 for Females.]

- Series 1, Group I: 76.8346
- Series 1, Group II: -1.5
Figure 6: Null Hypothesis 5

![Bar chart showing Mean ELA Difference from Grades 3-5 for Males for Series 1, Group I, 54.0714 and Series 1, Group II, 16.6923.]

Figure 7: Null Hypothesis 6

![Bar chart showing Mean ELA Difference from Grades 3-5 for Females for Group I, 61.3846 and Group II, 11.1667.]
Figure 8: Null Hypothesis 7

![Figure 8: Null Hypothesis 7](image)

Figure 9: Null Hypothesis 8

![Figure 9: Null Hypothesis 8](image)
Figure 10: Summary of Results
REFERENCES

teacher gender and sexuality in medicine and psychoanalytic theory and
440.

Education Update, 37*(8), 1,3,6.

Teacher_27515b3_html11756.html

teaching and curriculum design, or looping, work to provide a continuum that
(EJ677903)

practical answers to your most pressing questions*. Peterborough, NH: Crystal
Springs Books.

Franklin, C., & Holm, M. (2002). Looping - how widespread is its use? Rationale,

Delta Kappan, 76*(7), 522-530.

